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Abstract. Balancing exploratory and exploitative behavior is an essential dilem-

ma faced by adaptive agents. The challenge of finding a good trade-off between

exploration (learn new things) and exploitation (act optimally based on what

is already known) has been largely studied for decision-making problems where

the agent must learn a policy of actions. In this paper we propose the engaged

climber method, designed for solving the exploration-exploitation dilemma. The

solution consists in explicitly creating two different policies (for exploring or for

exploiting), and to determine the good moments to shift from the one to the

other by the use of notions like engagement and curiosity.
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1. Introduction

The Exploration-Exploitation Dilemma is a fundamental challenge faced by any kind
of adaptive agent. The agent must, at the same time: (a) presenting a good perfor-
mance when acting on its environment for achieving its goals, and (b) experiencing
unknown or misunderstood situations in order to learn new knowledge and potentially
discover better ways for achieving its goals. The problem of finding a good trade-off
between exploration and exploitation is generally studied using Reinforcement Learn-
ing (RL) algorithms associated to Markovian Decision Processes (MDP). On that
subjects, see, e.g., [1, 2, 3].

In model-based RL, the agent behavior stems from the models it learns. In this
way, the first two questions are: (a) how to learn a model of the world? (i.e. what
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methods for approximating reward and transition functions from observation)? and
(b) how to exploit the knowledge? (i.e. what method for planning or construct-
ing a policy of actions in order to maximize rewards?). Taken together, these two
questions cause a cyclical dependence: the way the agent behaves conditions what
it can learn, and what it knows conditions how it behaves. That is the seed of the
exploration-exploitation dilemma, and it implies two additional questions: (c) how
to balance exploration and exploitation? (i.e. what method for determining when
to shift from one strategy to the other) and (d) how to explore the world? (i.e.
what method for gaining knowledge efficiently?). We are concerned with the last two
questions.

In this paper we approach an underdeveloped problem: deciding when to shift
between exploration and exploitation. The motivation for such research comes from
the intuitive notion that, in general, when the agent is following a policy, it is chaining
actions, probably passing through indifferent or even penalizing states, in order to
achieve some interesting rewarding state at the end of the sequence. Once engaged
in a sequence of actions (that we can think of as a short-term plan) it is not very
interesting to change the strategy before achieving the reward: the invested effort
could be wasted. It is the same insight for exploring: when the agent spends its
time seeking a situation where a new experience will allow to learn some important
knowledge about the world, it should not miss such an opportunity by changing the
strategy before realizing the experience.

The contribution of this paper is the engaged climber method, designed for gov-
erning the equilibrium between exploration and exploitation based on the concept of
policy engagement (or policy commitment), bringing the notion of policy closer to the
notion of plan. In the proposed solution, the agent maintains two different policies
(for exploiting or exploring), based on two different estimated state utilities: the ex-
pected reward utility and the expected learning utility. A greedy behavior leads the
agent to search for rewards, and a curious behavior leads it to search for knowledge.
An engagement is associated to each behavior. The idea is to stay focused on the
same strategy to be able to reach the next peak (a big reward, or a big discovery),
then consummating the expected utility.

This paper is organized as follows: section 2 presents the RL and MDP background
and the state of the art on methods for balancing exploration and exploitation; section
3 introduce the research problem, the proposed method for solving the dilemma, and
preliminary experimental results comparing different methods; section 4 presents some
conclusions and perspectives.

2. Reinforcement Learning

Reinforcement Learning (RL) problems within Artificial Intelligence are originally in-
spired on classic behaviorist experiments, where a sequence of actions must be learned
through rewards and punishments in order to solve a maze. The computational ver-
sion of that experiment corresponds to an agent governing an unknown Markovian
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Decision Process. At each time step, the agent observes the state of the process,
executes some action, and eventually receives positive or negative rewards. It must
learn to coordinate its actions autonomously, by trial and error. There is no previous
separated time for training: the agent needs to perform and to improve its behavior
at the same time, actively and on-line, only based on its own experiences. After a
sufficient number of episodes, the agent is expected to learn a policy of actions that
maximizes the estimated average reward for subsequent episodes.

Model-free RL methods are able to directly learn a policy of actions that solves
a given MDP without modeling it, but they need to visit each state many times to
converge. In opposition, model-based learning mechanisms try to discover the effect
of the agent actions on the system by incrementally constructing a model of the world.
These mechanisms are able to learn a policy more efficiently because they can plan
over the model.

2.1. Markovian Decision Processes

The Markovian Decision Process (MDP) framework constitutes a widely-used set of
representations for modeling decision-making and planning problems. An MDP is
typically represented as a discrete stochastic finite state machine: at each time step
the machine is in some state s, the agent interacts with the process by choosing some
action a to perform, then the machine changes into a new state s′ and gives the agent
a corresponding reward r.

In an MDP, the flow of the process (the transition between states) only depends
on the system’s current state and on the action taken by the agent at the time. The
state of the whole process must can be represented without referring to the past.
In order to represent sequential decision problems, the history of states and actions
(if important) must be represented as a part of the state description. A general MDP
can be formally defined as a tuple {S,A, T,R} where:

� S = {s1, s2, ..., s|S|} is the finite non-empty set of system states;

� A = {a1, a2, ..., a|A|} is the finite non-empty set of agent actions;

� T : S×A×S → R[0,1] is the transition function, where T (s, a, s′) = Pr(s′|s, a);

� R : S × A × S × R → R[0,1] is the reward function, where R(s, a, s′, r) =
Pr(r|s, a, s′).

The transition function T defines the system dynamics by determining the next state
s′ given the current state s and the executed action a. The reward function R defines
the immediate reward after transition from state s to s′ with action a. A deterministic
policy π : S → A, where π(s) = a, defines the agent behavior by indicating the action
a to carry out depending on the system state s.

Solving an MDP means finding the policy of actions that maximizes the rewards
received by the agent over time. The optimal policy is often computationally hard
to calculate, and then in practice good algorithms are expected to guarantee a near-
optimal policy with high probability. When reward and transition functions are given,
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the MDP can be mathematically solved by dynamic programming. When these ele-
ments are ignored, the MDP can be solved by model-free RL methods, which directly
learn a policy of actions on-line. In the first case, a policy can be constructed by plan-
ning over the model, in the second case, the policy is updated after each interaction of
the agent with the system. Alternatively, model-based RL methods constitute an inter-
mediate solution, where the agent uses its experiences to approximate the parameters
of both MDP transition and reward functions, and then solve it with some dynamic
programming method, by incrementally estimating the utility of state-actions pairs
and then mapping states to actions [1].

In a finite time horizon, considering n steps, the mean reward 〈r〉 can be calculated
by the sum of each received reward rt divided by the total number of time steps:

〈r〉 =

∑n
t=1 rt
n

. (1)

In infinite time horizon, it is common to replace the mean reward for the discounted
cumulated reward v, using a discount factor γ ∈ R[0,1]. It enables to ponder between
future and immediate rewards, and that value can be calculated by:

v =
∞∑

t=1

γt.rt. (2)

From T and R models, a policy can be calculated by value-iteration. That method
extracts the policy from a value function V , which is iteratively updated until con-
vergence, as follows:

V ′(s)← maxa
∑

T (s, a, s′)[R(s′) + γV (s′)]. (3)

2.2. Exploration-Exploitation Dilemma

Classic methods for balancing exploration and exploitation use hand-tuned parame-
ters. Methods like ε-greedy and softmax use a fixed proportion of time to explore or
to exploit. In the ε-greedy method, at each time step, the agent can either execute
a random action with probability ε, or follow the current optimal policy otherwise. In
the softmax method, the agent selects among the possible actions proportionally to
their estimated reward utility. In this way, the likely best actions are executed with
higher probabilities, but less rewarded actions are tried from time to time. A pa-
rameter τ is used to define how the difference between the estimated action utilities
affect the choice. High τ or ε values result in more exploratory behavior, whereas low
values cause more greedy action selection.

The problem with these basic methods is that the exploration parameter is not ad-
justed during the learning process. To make them more adaptable, a meta-parameter
can be included to regulate the exploratory parameter [4]. It is the case for ε-first, that
performs full exploration during a predetermined amount of time, and then switches
to full exploitation. Alternatively, the decreasing-ε method proposes the gradual re-
duction of the ε parameter, so that the exploration probability decreases in a rate of
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1/n, where n is the elapsed time (in cycles). The softmax method can be modified in
the same way, making the τ value decrease over time. The decreasing rate is, however,
fixed.

In order to dynamically regulate the ε decreasing rate, the VDBE [5, 6] algorithms
utilize a state-dependent ε(s) parameter that measures the uncertainty on the utility
associated to each state in function of the fluctuations in the temporal-difference error.
The idea is to make the agent more explorative on the regions of the environment
where the reward estimation is still unstable, and to connect the adjustment on the
exploration rate sensible to how difficult is to learn the model.

Another approach to solve the exploration-exploitation dilemma is the optimistic
initialization of estimations. The idea is to be optimistic in face of uncertainty. It
consists in adding a bonus utility value to the less frequent experienced state-action
pairs [7]. It can be done by defining a priori optimistic reward estimations and then
choosing actions greedily. Actions that lead to unobserved situations will be probably
preferred. The more a situation is tried, the closer the estimated reward becomes to
the true average reward. As a consequence these algorithms present an initial phase
of exploration, that is gradually replaced by an exploitative behavior, as the modeled
reward and transition functions converge. Such approach is used in well-established
model-based methods like E3 [8], R-Max [9], and Bayesian-RL [10]. Directly or
indirectly, these methods take into account how often a state-action pair has been
visited. Less visited states have an exploration bonus added to the estimated reward
utility. The estimated models can be guaranteed to be probably approximately correct
after a sufficient and efficient number of experiences.

2.3. Conducting exploration

Once the method for balancing exploration and exploitation is chosen, another prob-
lem is to define how to explore the world. ε or softmax based methods use undirected
exploration [11], simply adding a degree of randomness during the action selection
process. Undirected exploration means executing random actions from time to time.
In this way, the agent can waste its exploring action with already well modeled state-
action pairs, or it can be leaded toward known strongly penalizing states.

Directed exploration methods prefer trying less visited state-action pairs, pondered
with their estimated reward utility. This is the case of R-Max, E3, Dyna, or Prioritized
Sweeping. Optimistic prior beliefs are associated to infrequent states in order to
induce the agent to try them (if they are not too far, and if there is no early and
strong negative reward evidence). Directed methods mix the exploration bonus with
the reward estimation, forcing the agent to an initial exploration phase that ceases
when the world is sufficiently experimented.

Another technique is to base exploration on a second-order information about
the uncertainty of the estimated reward utility. The UCB [4] algorithm combines
optimism over uncertainty with confidence bounds for each estimation. A similar
strategy is used in Bayes-Adaptive algorithms [12], and ε-VDBE algorithms [6].
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3. Designed problem and proposed solution

In this section we present the engaged climber method. The insight is that a short-
term plan is a set of actions that leads the agent to some interesting rewarded state
in the next future. A policy does the same without an explicit record of what is the
goal, just by pointing at the direction of such rewarded state calculating the utility of
local observable state-action pairs. Our solution preserves the spirit of model-based
RL methods, but adding some information to make the policy look like a plan.

Firstly, the models T̂ (which estimates the transitions) and R̂ (which estimates

the reward) must be extended to include the confidence parameter σ. T̂ : S×A×S →
R[0,1] × R[0,1] represents the probability of the transition and the confidence on the
prediction. R̂ : S × A × S → R × R[0,1] represents the estimated reward and the
confidence on the estimation. The value of σ is defined by the fluctuations in the
temporal-difference errors, like in [5].

To calculate the policies of actions, the algorithm incrementally updates utility
functions. The function VK : S → R gives the learning utility of a given state s. The
function VR : S → R gives the reward utility of the state s. VK represents the possible
future gain of knowledge for s, and VR represents the possible future average reward
for s. The engaged climber method presents the same loop of most model-based RL
methods, where the agent interacts with the environment, then uses the experience
to update its models, calculate utilities, and redefine policies. The difference is that
it maintains explicitly two types of utilities and policies for two distinct objectives:
to explore or to exploit. The first part of the algorithm verifies if the agent should
stay committed with the current strategy (exploring or exploiting), or if it should
reevaluate such engagement. When the agent is not engaged, it can analyze the
situation and choose the better strategy to follow from the given time.

The methods for learning the models can variate. In the machine learning liter-
ature, several algorithms are proposed for constructing models of the transition and
the reward functions. In our experimental scenarios we have used naive determinis-
tic estimators to learn T̂ and R̂ (based on the first observation). The definition of
the policy is also based in classic argmax comparisons, i.e. for a given state s, the
algorithm chooses the action a that maximizes the utility. The difference here is that
we have two different utilities, depending on the running strategy (to explore or to
exploit).

The engaged climber method chooses an strategy (exploring or exploiting) and re-
mains committed with it. An engagement is naturally broken when the agent reaches
a peak (in this case, we can consider that the strategy succeeded) or when too much
time has been spent on the same strategy with no gains (timeout). When one of these
situations follows, the agent redefines its strategy (taking a new engagement). When
both strategies seem interesting, the method uses an ε parameter to ponder between
learning or reward utilities.

Sometimes the current strategy makes no more sense (exploring when a critical
alert exists, exploring when there is nothing more to discover from the current state, or
exploiting when the current best policy expects negative rewards), in these cases, the
engagement is forcibly broken. The engaged climber method considers the cumulated
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Algorithm 1 Agent Lifecycle

Initialize() . initialize variables and tables
loop

if (π = πR) and (VR(s) < 0) and (VK(s) > 0) then
π ← πK ; ξ ← 0 . change to exploration

else if (π = πK) and (VK(s) = 0)
or (π = πK) and ($ < $min) and (VR(s) > 0) then

π ← πR ; ξ ← 0 . change to exploitation
else if (ξ > ξmax)

or (π = πR) and (r > 0)

or (π = πK) and (R̂ 6= R̂′) then
if (rnd() > ε) then π ← πR . use epsilon
else π ← πK ; ξ ← 0

else . unchanged strategy
ξ ← ξ + 1

end if
s←World.ObserveState() . observe current state
a← π(s) . select action
World.ExecuteAction(a) . carry out action
s′ ←World.ObserveState() . observe next state
r ←World.GetReward() . receive immediate reward

T̂ ← LearnT (T̂ , s, a, s′) . update transition model

R̂← LearnR(R̂, s, a, s′, r) . update reward model

VK ← UpdateVK(T̂ , R̂) . calculate exploration utility

VR ← UpdateVR(T̂ , R̂) . calculate exploitation utility
πK ← DefinePolicyK(VK) . redefine exploration policy
πR ← DefinePolicyR(VR) . redefine exploitation policy

end loop

reward as the agent’s score $. When the agent’s score becomes lower than a certain
critical level, the exploitation strategy is activated in order to bring the score back
to a non-critical state. When one strategy is clearly better than the other from the
current state, such strategy is chosen (e.g. nothing new to discover but reward gains
in sight, or inversely, no positive rewards are expected, but some state to explore on
the horizon).

The utilities are updated by the methods UpdateVK(T̂ , R̂) and UpdateVR(T̂ , R̂)
using an adapted value-iteration algorithm, following the given equations:

VK(s) = maxa

[∑
T (s, a, s′).

(σ(s′) + (VK(s′).ξ(s′))
ξ(s′) + 1

]
(4)

VR(s) = maxa

[∑
T (s, a, s′).

(R(s′) + (VR(s′).ξ(s′))
ξ(s′) + 1

]
(5)
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Figure 1. Chain Experiment.

3.1. Preliminary experimental results

The chain experiment [11] is a delayed reward setting where the agent must discover
the unique sequence of actions that leads it to a single distant rewarded state, like
illustrated in Figure 1. A single wrong action within the sequence puts the agent back
to the starting point. Random exploration (the type used in the ε-family methods)
would take O(2|S|) steps to reach the goal even once, whereas directed exploration
would require only O(|S|2) steps. If there are no costs or limited time for explor-
ing, methods like R-Max, optimistic in face of uncertainty, will discover almost the
entirely environment first, for then exploiting it. However, for several different prob-
lem settings, a more equilibrated balancing between exploration and exploitation is
needed.

In the proposed scenario, the transition and reward functions are deterministic.
The agent knows the transition model but it needs to learn the reward model. A 10-
states chain gives a negative reward (−1.0) when the agent steps toward the final state,
and a small positive reward (+0.5) when it takes the action that puts it back to the
first state. When the agent carries out the correct sequence of actions, passing by all
the states, it receives the big reward (+20.0). Thus, the way toward the goal imposes
a sequence of negative rewards before arriving to the goal. The confidence value σ is
set to 1 when a state-action pair is observed, and it is 0 when the transition has never
been tried. The agent’s score $ = 20+

∑n
t=1 rt are equivalent to the cumulated reward

added with an initial positive credit of 20. On the engaged climber method, the max-
imum engagement ξmax has been defined as 10 (equivalent to the number of states),
and any positive reward has been considered as a peak. An agent’s score $ lower
than 10 represents a critical level. We would like to have an intelligent agent, able to
quickly find a good policy, but avoiding the situation where the score becomes neg-
ative. In preliminary experiments, our engaged climber method reached interesting

Table 1. Experimental results.

Method Time to discover the goal Minimum score
ε-Greedy ≈ 1200 ≈ −400
Optimistic-Greedy ≈ 60 ≈ −30
Engaged-Climber ≈ 70 ≈ 0

performances. It is able to outperform the classic ε-greedy algorithm simply because
it uses directed exploration. When compared to classic optimistic under uncertainty
methods, engaged climber method presents the advantage of managing constraints like



81

exploration costs. Table 1 shows the mean performances of the three methods on 20
simulations. For ε-greedy we used value-iteration with ε = 0.99 (almost completely
random exploration). The optimistic initialization method can quickly reach the goal,
but its way of exploring does not takes into account the costs. The engaged climber
needs more time to reach the goal, but it is due to the management of costs, avoiding
negative scores.

4. Conclusion and perspectives

Popular reinforcement learning methods approach poorly the question of what is the
right time to shift between exploring and exploiting. If the agent is able to estimate
the value of the information, comparing its importance to the value of next rewards,
it can balance better between exploration and exploitation. It means to be able to
quantify how much the agent pays in terms of reward regret in order to obtain new
knowledge, and if such information is worth.

The use of exploration bonuses for infrequent states (optimism under uncertainty)
makes an inherent compensation between the value of future rewards and the value
of future learning. Methods such R-Max mix reward utility with learning utility in
order to be able to compare learning costs to reward regrets. A consequence of it is
a long primarily exploration phase. Depending on the problem settings, it could not
be possible to wait for. It is the case for scenarios where safety and risk, costs of
exploring, or even true non-determinism, are considered.

In the method proposed in this paper, a notion of curiosity is associated to a spe-
cific exploration policy. The agent explores the environment actively, planning and
taking decisions seeking to increase its knowledge about the world dynamics. Prelim-
inary experiments have demonstrated interesting results, even if much more experi-
mentation in different scenarios are still needed, as well a deeper analysis in terms of
algorithm complexity and robustness.

The exploration-exploitation dilemma is not a new subject, but many questions
are still open. Interesting directions to further research are, for example, the difference
between confidence and certainty, i.e. how to be sure of recognizing the probability
distribution of a stochastic function from observation? Furthermore, the dilemma
deserves more accurate studies for other kinds of settings, with different definitions
of optimality.
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